
Automatic Cell Detection in Fluorescent Embryonic Stem Cell Images

Zahid Hossain, Diana Wan, Cezanne Camacho
Stanford University

{zhossain,jdwan,cezannec}@stanford.edu

Abstract

We studied two seperate algorithms to automatically de-
tect and count embryonic stell cells from fluoresecent mis-
crocopy images. The first algorithm is based on a graph
mining approach that makes strong assumptions about the
topology of the cells. The second algorithm is a machine
learning approach that exploits supervised learning tech-
nique and uses only 10 positive and 10 negative cell exam-
ples for training. For the given dataset the graph mining
approach performs (85% accurate) slightly better then the
machine learning approach (72% accurate). Nevertheless,
we propose a platform that combines visual analytics with
machine learning approach to tackle cell counting problem
in general for all cell types.

1. Introduction

Even to this day and age cell detection and counting in
the context of biology research is largely a manual and a
labor intensive task. A reliable count is of paramount im-
portance as it is often a fundamental step in various growth
studies. The problem becomes particularly challenging as
cell undergo morphological changes over time and an ob-
servation of it also suffers from limitations arising from dif-
ferent imaging modalities. In this project we studied the
efficacy of two separate algorithms to automatically detect
and count a very specific, but clinically important cell type,
embryonic stem cells, from fluorescent microscopy images.
We also extended each of the algorithms to mitigate spu-
rious detections. Finally, we suggest a platform that com-
bines visual analytics with computer vision to approach this
problem generally for other cell types.

2. Related Work

A few methods of automatic counting have already been
proposed and employed by researchers, and in the follow-
ing sections we will examine the accuracy and efficacy of
these techniques. These techniques include: size-based nu-
clei separation and recognition [7], support vector machine

(SVM) learning models, which attempt to count cells based
on learned nuclei recognition [6, 5], thresholding, which re-
lies on high contrast between bright cells and a dark back-
ground to get an accurate cell count [1, 4], cell separation
via thresholding or watershed algorithm [5, 4], and graph
mining [3].

2.1. Thresholding

In fluorescence microscopy images, the cells we want to
count are illuminated when compared to the background of
the image. So, in theory it would be easy to convert an im-
age into a black and white binary pixel representation from
which a cell count could be extracted. One such method of
cell counting relies on an algorithm that is defined by an ini-
tially chosen threshold level which determines the resulting
binary image and its 2D matrix representation. Then, by
calculating the average cell nucleus area with the region-
props command in Matlab, this algorithm extracts a cell
count by dividing the area matrix with this average nucleus
area and summing the resultant integers [1]. This method
is effective for well-separated, high contrast images, and
as long as the average nuclei area remains the same, this
method is robust in the face of variation in the shape of nu-
clei. However, this technique falls short when cell nuclei are
of varying areas, or when there are clusters of cells that this
method cannot differentiate. Figure 1 shows the binariza-
tion of an image based on a fluorescent intensity threshold;
in this figure you can see that smaller cells are not detected
at all, and brighter cells become more difficult to spatially
differentiate. Also, given a set of z-plane images, such as
our set of confocal microscopy images, this method will
likely overcount nuclei by recognizing and counting their
perceived area in multiple depth planes.

2.2. Cell Separation

Cells that are clustered together are reliably recognized
by a visual count, but often computational methods have
trouble separating these cells and recognizing each cell indi-
vidually. Two main separation methods are typically used:
a threshold that tries to recognize lower image intensities in
the area between cells, and the watershed algorithm which

4321



Figure 1. Left: Input image. Right: Binarization after thresh-
olding.

effectively creates edges where these low intensities are lo-
cated [1, 4]. These methods are similar and the watershed
algorithm has been shown to work well with a 2D image as
long as image resolution is good enough to show a differ-
ence in fluorescent intensity when cells overlap or are right
next to one another versus the fluorescent intensity when
cells are well separated.

2.3. Machine Learning

One of the approaches in the current literature adopts
SVM to train and detect cell nuclei [5]. SVM is able to find
the hyperplane that can separate two classes with maximum
distance. The training data is separated into training set and
testing set. Among the training images, each image is man-
ually divided into sub-images. Sub-images containing a cell
nucleus are positive training samples while the rest are neg-
ative training samples. As for the testing images, a variable
sized sliding window is adopted to search cell nuclei from
top left to bottom right and to cater for the variable sizes of
cells.

2.4. Graph Mining

This is an unsupervised learning approach proposed by
Faustino, Geisa M., et al. that works well for counting em-
bryonic stem (ES) cells in uorescence microscopy images.
The challenge here is that the cells could appear fused due
to very close spatial proximity or a single cell could po-
tentially be counted twice for having multiple bright spots.
In either case, a graph based approach, where an image is
represented by a graph of connected components, outper-
forms the existing watershed algorithm. In this method,
cells are modeled as domes and the image is segmented by
thresholding at an increasing order of scalar value. At ev-
ery threshold level, components are detected and tracked to
construct a graph that captures how components may splits
at a higher threshold. Intuitively, this is similar to walking in
a mountain range: all the close-by mountains appear fused
along the valley as one walks at the ground level, while the
same mountains start separating as one climbs upward. This
graph is then mined for simple paths, i.e. chain of nodes that
dont split, to detect individual cells. An additional step of
clustering is performed in the graph space to improve accu-
racy.

3. Method
We decided that the most accurate and precise algorithms

were robust in the face of cell size and brightness variation,
which are strengths of human visual intuition. Also, algo-
rithms that were generalizable and scalable were more ideal.
Since we have seen that thresholding is the most simplistic
and least effective approach, we decided to implement both
machine learning and graph-mining cell-counting methods.

3.1. Graph Mining Approach

We adopted this technique from Faustino et al. [3]. In
this approach each cell in an image is modeled as a smooth
2D function that has a single local maxima in its neighbor-
hood. Figure 2 demonstrates this cell model. Note that in
this model the shape of the cell does not necessarily have to
be circular or blob like.

Figure 2. Left: grayscale image representation of the cells, Right:
the corresponding heightfield representation of the cells. Each lo-
cal maxima in the heightfield corresponds to one cell on the left
image.

The overall graph mining process can be divided up into
the following 5 steps.

1. Preprocessing

2. Histogram Partitioning and Connected Component
Detection

3. Graph Construction

4. Graph Mining

5. Graph Clustering

The exact values of all the parameter that we may introduce
in this section will be reported in Section 4.

Preprocessing: First we convert the image into grayscale
and only use this grayscale representation for the rest of the
pipeline. Unlike the assumed model as shown in Figure 2,
a real image is often contaminated with noise that give rise
to spurious peaks. Hence we first smoothen the image us-
ing a Gaussian filter with a standard deviation of σ to get

4322



rid of some of these noise as well remove any discontinu-
ities. Next we remove the background by applying a simple
threshold τ = µI +x ·σI , where µI is the average intensity
value, σI is the standard deviation of the intensities and x is
a parameter. We set all the pixels to 0 which has intensities
less than τ .

Histogram Partitioning and Connected Component De-
tection: In this step we partition the histogram of the im-
age (intensities values ranging from [0, 255]) in n equal
sized segments. For example, in Figure 3, a histogram is
partitioned into n = 4 segments and one of the segments
(marked in red) is used to create a binary image containing
only the pixels that belong to the selected histogram seg-
ment. This binary image is then used to find all the con-
nected components using a 4-connected filter. Each compo-
nent is given a unique label and this process is repeated for
every segment on the histogram. This yields a single image,
we term as label image M , that has the same dimension as
original, where each pixel is labeled (see Figure 4). We tra-
versed the histogram from the largest range to the smallest,
i.e. from right to left, and assigned labels such that pixels
with higher intensities get smaller label values. This makes
the graph mining step, discussed later, computationally eas-
ier.

Figure 3. Left: Histogram which is partitioned into n = 4 seg-
ments. Right: Binarized pixels within the red segment on the his-
togram.

Figure 4. The input image is the same as Figure 2 Left: bina-
rized images from histogram segmentation. The histogram was
segmented into n = 16 parts. Right: All detected labels (color
coded) in one single image, we term as label image, M .

Graph Construction: An undirected graph of connected
components is then constructed from the label image M .
We used a matrix representation for this graph and looked
at 4 neighbors of each pixel in M in one single scan to pop-
ulate the matrix.

Figure 5. Left: An undirected graph of connected components
generated from the label image M as shown in Figure 4. Right:
Detected cells, each of which corresponds to a simple path, are
marked as red dots.

Graph Mining Every cell in the input image corresponds
to a simple path in the undirected graph. A simple path in
the graph is defined as a path where every node appears only
once and have at most 2 edges. For example, in Figure 5, the
paths {0}, {1}and{3} and all simple paths. However, note
that a simple path may contain more than 1 nodes. The peak
of each cell is marked as the cell location and since we con-
structed M such that the peaks have smaller labels we tra-
verse the graph rooted at smaller node values and mark off
any node that we have already visited. This not only prunes
the search space significantly but also guarantees that we
always traverse from some peak.

Graph Clustering A naı̈ve graph mining will detect
many spurious cells due to multiple local maximas within
a single cell. This may occur due to noise or some special
structure of the cell itself, e.g. multiple cell nucleus or other
organelles. In most cases we already know the approximate
scale of the cells in a given image. This information could
be provided by a biologist once before running the system
in batch or could be extracted from the imaging metadata.
We used that information to compute pair-wise distances
between every possible pair of detected cells. Next, for
every detected cell, we prune all the other detected cells
that are within that scale threshold. This however makes
an implicit assumption that cells do not overlap each other
in the image. A simple pair-wise distance computation was
reasonably fast in our case but for very large dataset with
potentially many cells one could employ space partitioning
algorithms like quad-tree to speed up this process.

4323



Figure 6. Top Row: 3 positive training examples. Bottom Row:
3 negative training examples.

Figure 5 shows only 3 cells were detected instead of 4.
We described our algorithm in the light of a specific input
image as shown in Figure 2 on purpose to demonstrate ex-
actly where our technique succeeds and where it fails. The
underlying reason for missing one extra cell in the detection
can be understood by referring to Figure 3. In this figure,
the two cells peaks in the bottom (light blue) were mistak-
enly merged during the histogram partitioning step because
the number of partitions n = 16 was not high enough. How-
ever, if n is too high it will lead to too many disjoint com-
ponents in the labeling process due to the discrete nature of
the data and this may again yield poor performance.

3.2. Supervised Learning Approach

3.2.1 Support Vector Machine

Support Vector Machine is a commonly used approach of
pattern classification in machine learning. SVM determines
the separating hyperplane by maximizing the distance of it
to the closest points in the training set [2]. Popular SVM
kernels include linear, polynomial, radial basis function and
sigmoid. It generally involves two steps when applying
SVM to a classification problem, which are training and
predicting. In training step, positive samples and negative
samples are presented. In the predicting step, the model
generated from the training step is used to predict each in-
put sample to be either positive or negative judging from its
position to the separating hyperplane.

3.2.2 Training

Our goal is to detect cells so we should feed SVM with pos-
itive training patches that contain cells and negative training
patches that does not contain a complete cell (no cell, or a
partial cell). We extracted patches of 11 by 11 from the fluo-
rescent cell image dataset. Examples are shown in Figure 6:

The size 11-by-11 is not arbitrary. It is observable that in
this dataset, most cells have similar sizes and a single cell
can fit into a 11-by-11 square window just about right. In
selecting positive patches, we tended to include cells with
more variable shapes as possible. As mentioned in the pre-
vious sections, cells vary in shapes. Therefore if we only

selected cells with one shape, it is possible that our trained
model would not be able to detect cells with other kinds of
shapes. As for negative patches, we included a variety of
background patches and also patches with partial cells.

3.2.3 Prediction

For each image in the testing set, we moved a sliding win-
dow of 11 by 11 from top left to bottom right. By us-
ing this exhaustive search method, we got a testing patch
at each pixel location and we used our training model to
determine whether this patch contained a cell or not. If a
patch contained a cell, we marked the central position of this
patch with a yellow marker. One thing worth mentioning is
that, during our experiment, we initially could only detect
cells that had a good contrast to their backgrounds and this
method failed on cells that were less conspicuous. After an-
alyzing the problem, we decided to normalize all the train-
ing patches before feeding them into SVM in our training
step, and normalize all the testing patches before predict-
ing. This improved method worked perfectly and was able
to detect all of the cells present in an image. However, there
were duplicate detections, and this will be addressed in the
next sub-section of this paper.

3.2.4 Post-Processing

There are several methods to eliminate duplicate detections,
such as non-max suppression, merging points that are too
close together, etc. We opted to use the merging method we
moved a larger sliding window across the whole image and
at each location we merged points that had Euclidean dis-
tances smaller than a threshold. This method worked very
well in eliminating duplicate detections. The value of the
threshold should be empirically selected. If the value was
too large, we would have some false negatives; if the value
was too small, we would have some false positives. The
optimal threshold value should be a tradeoff between false
positives and false negatives.

4. Results

For detection problems, precision and recall are often
used to measure the performance of an algorithm. Precision
measures how relevant the retrieved items are and recall
measures the ability to retrieve relevant items. F-measure
is just the harmonic mean between precision and recall. To
calculate precision and recall, we need to know the ground
truth data first. We manually labeled cells in 10 cell images
from the dataset. Due to limitation of time and manual la-
bor, we only included 10 images in our testing set. For each
algorithm we compared our results with this ground truth
data.

4324



4.1. Graph Mining Results

(a) (b)
Figure 7. (a) Detected cells (yellow) by the graph mining tech-
nique. (b) Matching between the detected cells (yellow) and the
hand labeled cells (red).

We ran the Graph Mining algorithm with a parameter
setting of (σ = 2 pixels, x = 0.3 and n = 16). Figure 7
shows the results of the graph mining technique which we
compared with the hand labeled ground truth. For compar-
ison we perform a bipartite matching between the detected
cells and the ground truth subject to a threshold that is ap-
proximately the scale of a single cell. We ran this algorithm
on our entire dataset and observed an performance (see Fig-
ure 8, average precision = 85%, average recall = 83%) that
is within an acceptable range for the biologists.

Figure 8. Precision/Recall for the Graph Mining technique.

Figure 9 shows where the Graph Mining algorithm
failed. The red dots corresponds to the false negatives while
the yellow dots to false positives. We noticed a pattern
among the false positives, i.e. in most cases they live in
the valley of surrounding cells, which tells us there is still
some room for improving the precision measure.

4.2. Supervised-Learning Results

The precisions and recalls for the Supervised-Learning
approach is given in Table 4.2. Learning curve is usually
used in measuring the performance of a machine learning
algorithm. Test error measures the relationship between er-
ror rate and the size of the training set, and it usually de-
creases as the training set size increases. Training error is
the error rate of testing on the rest of the original training set
while the training set size here increases. Usually the train-
ing error increases as the training set size increases. How-

Figure 9. Failure cases of Graph Mining: Red: False Negatives,
Yellow: False Positives.

File # Precision Recall F-measure
1 0.7667 0.8164 0.7908
2 0.7774 0.7172 0.7461
3 0.8303 0.7455 0.7856
4 0.7476 0.7979 0.7719
5 0.6778 0.7125 0.6947
6 0.5522 0.6915 0.6140
7 0.7667 0.8058 0.7858
8 0.7558 0.7708 0.7632
9 0.7410 0.7540 0.7474
10 0.5902 0.7099 0.6445

Average 0.7206 0.7521 0.7344

ever, in our approach, we had a small training set of 10 pos-
itive patches and 10 negative patches. We decided that due
to the small size of the training set, training error might not
be a good measurement of performance and should not be
adopted. The learning curve of test error is shown as below.
It can be seen that the error rate decreases with the increase
of training set size and it is believed that the error rate will
remain relatively constant when the training set size is large
enough.

5. Conclusion
It is hard to design a generic cell detection technique

that will encompass all cell types and imaging modalities.

4325



Both the graph mining and the supervised machine learn-
ing approaches worked remarkably well for the embryonic
stem cells. After interviewing a few biologists we learned
that cell counting is mostly done manually because none of
the existing system seem to be adequate. We tried some of
the automation tools that are available to better understand
where they fall short. What seemed to be lacking is per-
haps not the quality of each algorithm but a platform that
integrates visual analytics with automation through a good
interface. For example, there is really no easy way for a
biologist to interact with the automation results and correct
wherever it made mistakes. We realize that any automation
system is unlikely to be perfect and hence there is a serious
need for a platform that a) learns from the data and mistakes
over time b) allows biologists to correct mistakes through
very simple interfaces. Though our machine learning based
approach fell slightly short in terms of performance com-
pared to the graph mining approach, we envision that an
ensemble of machine learning approaches combined with a
visual analytics platform will tackle this problem better in
the long run. Typically a biologist work on a particular cell
type and imaging modality for a number of years which also
gives the aforementioned platform a much greater opportu-
nity to learn over time. In addition, biologists can share
these learned parameters with each other to cover diverse
cell types and imaging modalities.

Acknowledgments
We would like to thank Dr. Silvio Savarese along with

all the TAs for teaching this incredibly valuable course of
CS231a. We would also like to thank Dr. Ian Driver and
David Glass from the Stanford Bioengineering department
for providing us with the dataset and various supports all
throughout.

References
[1] B. K. Al-Khazraji, P. J. Medeiros, N. M. Novielli, and

D. N. Jackson. An Automated Cell-Counting Algorithm for
Fluorescently-Stained Cells in Migration Assays. Biological
procedures online, 13(1):1–6, 2011.

[2] C. Cortes and V. Vapnik. Support-Vector Networks. Machine
learning, 20(3):273–297, 1995.

[3] G. M. Faustino, M. Gattass, C. J. de Lucena, P. B. Campos,
and S. K. Rehen. A Graph-Mining Algorithm for Automatic
Detection and Counting of Embryonic Stem Cells in Fluores-
cence Microscopy Images. Integrated Computer-Aided Engi-
neering, 18(1):91–106, 2011.

[4] M. G. Forero and A. Hidalgo. Image Processing Methods for
Automatic Cell Counting In Vivo or In Situ Using 3D Confo-
cal Microscopy. 2011.

[5] J. Han, T. Breckon, D. Randell, and G. Landini. Radicu-
lar Cysts and Odontogenic Keratocysts Epithelia Classifica-
tion Using Cascaded Haar Classifiers. In Proceedings of the

Twelfth Annual Conference of Medical Image Understanding
and Analysis, pages 54–58, 2008.

[6] J. W. Han, T. P. Breckon, D. A. Randell, and G. Landini. The
Application of Support Vector Machine Classification to De-
tect Cell Nuclei for Automated Microscopy. Machine Vision
and Applications, 23(1):15–24, 2012.

[7] T. Shimada, K. Kato, A. Kamikouchi, and K. Ito. Analysis
of The Distribution of the Brain Cells of the Fruit Fly by an
Automatic Cell Counting Algorithm. Physica A: Statistical
Mechanics and its Applications, 350(1):144–149, 2005.

4326


