
 1 

Modeling Activity Recognition Using 

Physiological Data Collected from Wearable 

Technology  

 

Cezanne Camacho, Jennifer Li, Jeffrey Yang 

CS229 Final Project, Stanford University 

 

Abstract 

Wearable technology presents a uniquely 

convenient and portable way to record 

physiological data from users, which could be 

used to monitor health or recreational activities. 

With increasing amounts of such data, it would 

be useful to automatically categorize a user’s 

activity based on this data. Our paper utilizes 

machine learning to classify user activity, and 

we compare the strengths and weaknesses of 

supervised and unsupervised learning 

approaches using LDA, SVM and Random 

Forest classifiers, and K-means clustering 

classifiers, respectively. We then discuss which 

of these algorithms show the best performance 

for general activity recognition. 

  

1. Introduction 

As wearable tech becomes increasingly 

prevalent, vast amounts of additional data will be 

generated and made available to better 

understand the activities users are performing in 

real-time. Wearable tech is also uniquely 

convenient because of its ability to receive 

information from an individual user in essentially 

real time without the need for external 

infrastructure. Using this knowledge, targeted 

marketing or predictions can be made about 

what a user might want to do next based on 

mood associated with physiological markers. 

The task at hand is to understand the 

relationship between the biometric data 

collected from wearable technology and the 

activities users are engaged in. 

In this paper, we discuss the use of 

different machine learning techniques for 

determining a user’s activity from a dataset that 

was collected for the Physiological Data 

Modeling Contest at ICML in 2004. This dataset 

maps participant characteristics, such as age 

and gender, to physiological data that was 

collected over time during a known activity. 

Using a training set annotated with codes 

indicating the type of activity the user was 

engaged in during the measurements, we train 

multiclass classifiers to identify the type of 

activity the participant was performing based on 

physiological markers. The scope of this study 

follows the guidelines of the PDMC contest 

which focused on the ability to distinguish 

between sleeping, watching TV, and all other 

activities.  

  

2. Review of Previous Work 

Wearable sensor technology has been 

investigated as an effective way to regularly 

monitor individual health. Researchers at MIT 

have used wearable technology to build a 

mobile, personal profile that records vital signs, 

motor activity, and sleep patterns so that users 

can look at these health indicators on a real time 

basis [1], and some research has been done to 

use machine learning to map emotional state to 

features from physiological data [2]. Wearable 

accelerometers have been used to quantify and 

classify motor ability in recovering stroke victims 

[3], and accelerometers have been used in 

elderly care to recognize when someone has 

fallen [4]. 

Especially in these health-related 

applications, it is easy to see that any activity 

classification algorithms must be very accurate 

and robust in the face of a changing user. Most 

machine learning applications rely on learning 

from heavily annotated data run through SVM 

classifiers, and since data is often not so readily 

categorized, our project aims to see how 

unsupervised learning algorithms compare to 

supervised approaches. 

 
3. Dataset, Features, and Preprocessing  

We obtained our data from a set that was 

collected for the Physiological Data Modeling 

Contest at ICML in 2004. This dataset was 

collected from participants wearing BodyMedia 

wearable technology and includes details of 

participant age, handedness, and gender, as 

well as physiological markers including galvanic 

skin response, heat flux, body temperature, skin 

temperature, and accelerometer measurements. 
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The physiological data that each sensor records 

is specified in Table 1. Data was collected from 

18 users across several sessions, with 

measurements taken each minute. Over 700k 

training examples were made, of which 

approximately 200k were annotated.  

 
Table 1. Semantics of the characteristics of the 

human subjects and the sensor readings 
Name Semantics 

characteristic1 age 

characteristic2 handedness 

sensor1 gsr low average 

sensor2 heat flux high average 

sensor3 near body temp average 

sensor4 pedometer 

sensor5 skin temp average 

sensor6 longitudinal accelerometer SAD 

sensor7 longitudinal accelerometer average 

sensor8 transverse accelerometer SAD 

sensor9 transverse accelerometer average 

 

 
Figure 1. Correlations between biometric sensors and 

select training data distributions.  

 

Figure 1 shows the correlations for each of 

the nine sensors for which we can see that the 

physiological data are not always independent of 

one another. Indeed, features like average skin 

temperature and heat flux are naturally 

correlated, which is accounted for during feature 

selection for some of our algorithms. Figure 1 

also shows sample data distributions which were 

transformed as-needed during pre-processing. 

The data was pre-processed by first 

removing outliers and incomplete entries. 

Transformations were applied to reduce spread 

and skew in the data. New binary features, such 

as a ‘walking’ field from pedometer data, were 

created to use in model training. Activity 

annotations were reclassified into either 

sleeping, watching TV, or other, as outlined in 

the PDMC contest.  

  

 4. Implemented Algorithms 

We aimed to compare the efficacy of 

supervised versus unsupervised learning 

algorithms by implementing linear discriminant 

analysis (LDA), support vector machines (SVM) 

with different kernels, and the random forest 

model for supervised models, and a K-means 

clustering approach for the unsupervised model. 

Here, we discuss the method behind each 

approach and the results that were produced.  

 

4. 1. Linear Discriminant Analysis (LDA) 

Linear discriminant analysis reduces the 

feature dimension, and separates data points 

into classes based on the reduced feature 

subspace. This reduced features space is 

computed through maximizing the separation 

between multiple classes. Because the 

algorithm requires this information about the 

classes, LDA is a supervised learning algorithm. 

The main steps of the algorithm start with 

computing the means of the feature vectors and 

computing the within-class scatter matrix, SW, 

using these means. The between class scatter 

matrix, SB, is then computed using the sample 

sizes and means of all the classes in the training 

data. To incorporate the effects from both within 

and between class variations, the algorithm 

computes the eigenvalues for the matrix, SW
-1

SB. 

The eigenvalues play an important role in 

determining the new features subspace, as the 

eigenvalues with lower values contain less 

information about the distribution of the data. A 
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number of eigenvalues are chosen to construct 

the new features space, and a matrix, W, is 

computed to transform the samples into the new 

subspace. The final objective function, D, for the 

algorithm is to maximize: 

𝐷(𝑊) =  |
𝑊𝑇𝑆𝐵𝑊

𝑊𝑇𝑆𝑊𝑊
| 

 

For our classification of activities, we need 

to distinguish between three classes, sleep, TV, 

and other. We use LDA to reduce the number of 

features to 2, and classify the activities based on 

this new subspace, as shown in Figure 2 below. 

The confusion matrix, as well as the Precision, 

Recall, and F-scores for this algorithm are 

shown in Table 2. 

 

 
Figure 2. Classified data plotted on the reduced 

feature subspace determined through LDA showing 

optimal separation between sleep, TV and other. 

 
Table 2. Confusion matrix and Precision, Recall and 

F-scores for LDA model. 

 Other Sleep TV 

Other 55170 2029 20914 

Sleep 11206 101196 2117 

TV 3768 441 3100 
 

 Precision Recall F-Score 

Other 0.706 0.787 0.744 

Sleep 0.884 0.976 0.928 

TV 0.424 0.119 0.185 

 

4.2. Support Vector Machines (SVM) 

Support Vector Machines is a supervised 

learning algorithm that classifies objects based 

on the support vectors of a dataset, or the data 

points that lie closest to the decision boundary. 

The algorithm aims to maximize this distance to 

better separate the classes. The objective 

function that achieves this is the following: 

max 𝐷(𝛼) =  ∑ 𝛼𝑖 −
1

2
∑ 𝑦𝑖𝛼𝑖𝑦𝑗𝛼𝑗𝐾(𝒙𝑖𝑥𝑗)

𝑛

𝑖,𝑗=1

𝑛

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
∀𝑖 0 ≤ 𝛼𝑖 ≤ 𝐶

Σ𝑖 𝑦𝑖𝛼𝑖 = 0
 

 

This function arises from the primal form, 

which maximizes the functional margin, or 

essentially how far the closest sample point is 

from the boundary. To make this problem easier 

to solve, we work with the dual form of the 

objective, shown above. In most cases, α will be 

zero. In the few cases of the support vectors, the 

α will be nonzero. The kernel in the equation 

allows for feature mapping and nonlinear 

decision boundaries.  

Initially, we trained SVMs using 10% of the 

training data using the default parameters in the 

R package e1071 and altered the kernel function 

type (linear, radial, polynomial and sigmoidal) in 

order to determine which kernel provided 

optimal classification. The radial kernel function 

was found to provide the best performance, and 

the sigmoidal kernel the worst, which is 

highlighted in Table 3. Using the radial kernel, 

training and test errors were measured as a 

function of the number of training examples, 

ranging from 17k to 170k examples (Figure 3). 

Increasing the number of training examples 

resulted in small improvements in both reducing 

measured training and test errors. This suggests 

that we should further optimize our choice of 

features rather than increase our training set 

size. The confusion matrix and Precision, Recall, 

and F-scores are shown for the radial kernel in 

Table 4. Based on these results, we can 

conclude that our SVM model provides more 

accurate classification than LDA, with almost a 

doubled F-score for the TV class, which is the 

most frequently misclassified activity.  
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Table 3. Comparison of SVM training and test errors 

using various kernel functions. 

Kernel Type Training Error Test Error 

Linear 0.1627 0.1981 

Radial 0.1354 0.1965 

Polynomial 0.1481 0.2050 

Sigmoidal 0.2185 0.2636 

 

 
Figure 3. Training and test error of SVM with radial 

kernel function as a function of training examples 

used in model fitting. 

 
Table 4. Confusion matrix and Precision, Recall and 

F-scores for SVM with radial kernel. 

 Other Sleep TV 

Other 55412 2870 18034 

Sleep 10127 100676 1567 

TV 4605 120 6530 
 

 Precision Recall F-Score 

Other 0.726 0.790 0.757 

Sleep 0.896 0.971 0.932 

TV 0.580 0.250 0.349 

 
Table 5. Confusion matrix and Precision, Recall and 

F-scores for Random Forest model. 

 Other Sleep TV 

Other 56907 3514 17723 

Sleep 8552 100039 1494 

TV 4685 113 6914 
 

 Precision Recall F-Score 

Other 0.728 0.811 0.768 

Sleep 0.909 0.965 0.936 

TV 0.590 0.265 0.365 

 

4.3. Random Forest 

Random Forest fits decision trees to 

randomly selected samples of data from the 

training set and features, and makes predictions 

for new data by averaging the predictions from 

all trees. We applied a random forest model of 

1000 trees, which showed slightly improved 

performance compared to our SVM model. 

Improved F-scores were measured for all three 

classes of activity compared to our SVM model. 

The confusion matrix and Precision, Recall, and 

F-scores are shown in Table 5. 

 

4.4. K-Means Clustering 

K-means is an unsupervised algorithm that 

clusters data based on how close they are to a 

determined cluster centroid. It essentially relies 

on the closeness of data that describes one 

class, and distance between separate classes of 

data. We thought that k-means applied to 

activity recognition would be useful to compare 

to supervised learning algorithms as well as 

useful because it has the advantage of not 

requiring annotated data, which for wearable 

technology would make data collection easier. 

In order to apply K-means to activity 

recognition based on sensor data, we take the 

set of training data and sample three sensor 

data examples randomly to create three initial k 

means, which are also our initial centroids. 

These are three vectors of length nine to 

account for each sensor value. We then go 

through all of the sensor data, x
(i)

 and calculate 

which of these three means it is closest to as 

determined by the squared error to create 

cluster of data points; one cluster for each of the 

centroids. We then update the value of the 

centroids based on minimizing the error between 

the centroid and the cluster sensor data that is 

assigned to them. This is the objective function 

of the k means algorithm and is described in the 

equation below, where D is the function to be 

minimized, xi the nine-dimensional data points in 

the training set, and cj the current centroids. 

𝐷 =  ∑ ∑ ‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖
2

𝑛

𝑖=1

𝑘

𝑗=1

 

   

We then run these steps for forming 

clusters and updating centroids repetitively until 

the values of the centroids stop changing or 

have only changed a trivial amount. Then we 
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can say that this algorithm has reached 

convergence and that a local optimum has been 

reached. K-means does not guarantee that a 

global optimum has been reached because that 

optimum is dependent on the initial random 

choice of centroids. K-means also works best for 

clusters of data that are well separated, but in 

the case of physiological data, there is often a 

lot of overlap. 

We applied K-means to the separation of 

three activities: sleeping, watching TV, and 

other. K-means with k=3 was applied to cluster 

the three activities in a nine-dimensional space. 

The K-means clusters and centroids are shown 

in Fig 4, along with the actual class distributions. 

The error of K-means prediction was 33.79% 

(taken as an average over three runs). 

 

 
Figure 4. Sample of results of the K-means clustering 

algorithm for k = 3. (From top to bottom) The first 

image shows the resultant clusters for one run of K-

means; the ‘x’s mark the centroids of the clusters. The 

next three plots show the actual division of training set 

data into 3 clusters indicating TV, Sleep, and Other. 

These images show clusters for sensors 1 and 2 so 

that they can be plotted in a 2D space, but all nine 

sensors were used in computing the clusters. 

  

5. Conclusions and Future Work 

This project demonstrated how machine 

learning can be applied to a variety of specific 

activity-related diagnostics. Our work shows that 

supervised learning algorithms provide the most 

accurate recognition, with the Random Forest 

algorithm having the most promising F-scores, 

which indicate accuracy based on precision and 

recall. Our unsupervised algorithm could not 

separate the data as well as the supervised 

approaches. However, work could be done to 

further improve this approach, which would 

make it easier to handle large amounts of 

individual data supplied by wearable tech. To 

improve the accuracy of our models, additional 

pre-processing could be done, including 

normalizing the biometric sensors for each 

individual and training models based on an data 

that precludes variation across individual 

participants. Neural networks and time-

dependent approaches like Conditional Random 

Fields could be implemented to provide more 

accurate predictions using knowledge of 

previous activity annotations. 

One could imagine how activity recognition 

could be applied to individual healthcare, say fall 

detection for the elderly or general fitness, as 

well as how this recognition could be applied to 

personal entertainment and recreation. 
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